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Review of Jiang et al.

In 1984, Duncan (1984) demonstrated
that visual attention prioritizes whole ob-
jects: subjects performed better when re-
porting two features on the same object
than when reporting one feature from
each of two adjacent objects. This marked
the beginning of the field of object-based
attention research (Egly et al., 1994). Later
studies showed that the neural (fMRI)
representation of multiple attributes belong-
ing to a target object is enhanced relative to
those of a control object (O’Craven et al.,
1999), and that object-based attention has
a temporal dimension in sampling the tar-
get and control objects at different fre-
quencies (Fiebelkorn et al., 2013).

The view of attention as a homoge-
neous construct has recently been called
into question. Attention is now viewed
as an umbrella term for multiple subpro-
cesses [feature-based attention (Treisman
and Gelade 1980); spatial attention (Pos-
ner, 1980); top-down vs bottom-up atten-
tion (Buschman and Miller, 2007); and
sustained attention (Rosenberg et al., 2016)].

Object-based attention (Egly et al., 1994),
as described above, is one of these subpro-
cesses. This heterogeneity in the attention
literature has prompted a number of sci-
entists (Chun et al., 2011) to advocate for
taxonomizing the construct to facilitate
greater precision in future research.

In a series of recent articles, Summer-
field and Egner (2009, 2016) propose that
not only is the attention literature het-
erogeneous in consisting of multiple sub-
components, but that some experiments
designed to investigate attention may
confound attention itself with the concep-
tually distinct construct of expectation.
Summerfield and Egner (2009, 2016)
postulate that expectation is driven by in-
formation about the probability of an up-
coming event while attention is driven by
information about its relevance. In con-
trast to the straightforward conceptual
difference between attention and expecta-
tion, the difference in experimental design
required to induce each of these two cog-
nitive processes is subtle. In both atten-
tion and expectation experiments, a cue
provides information about an upcoming
target with some probability, and the
presence of this cue facilitates perfor-
mance (Summerfield and Egner, 2016).
Summerfield and Egner (2009, 2016) ar-
gue that if the cue provides information
about the probability of occurrence of an
upcoming event and the task of the sub-
ject is simply to indicate whether the event
occurred, then the experiment elicits a

neurocognitive expectation process. If the
experiment is instead designed so that the
cue indicates which of multiple dimen-
sions is task relevant and the task of the
subject is to respond to some feature
within the relevant dimension, then the
experiment elicits an attention mechanism
(Summerfield and Egner, 2009; 2016). Sum-
merfieldandEgner(2009,2016) furtherspec-
ulate that expectation and attention might
rely on distinct neural mechanisms: an
expected event in many cases results in
decreased neural processing, while an at-
tended event results in increased process-
ing (Summerfield and Egner, 2009). This
recasting of portions of the attention
literature as expectation enables interpre-
tation of experimental results from the
perspective of predictive coding, a compu-
tational theory of how the brain facilitates
perception from sensation by minimizing
the prediction error between expected and
received sensory input (Huang and Rao,
2011).

If the central claim by Summerfield
and Egner (2009, 2016), that a subtle ad-
aptation to existing attention experiments
induces a distinct but parallel process to
attention, is correct, then this raises the ques-
tion of whether expectation, like attention,
is also a heterogeneous construct. This
theory creates the opportunity to branch
out new expectation subfields in parallel
to the more mature subdomains of atten-
tion research (e.g., feature based; spatial;
top-down vs bottom-up; object-based; and

Received Feb. 13, 2017; revised March 28, 2017; accepted March 30, 2017.
This work was supported by National Institute of Neurological Disorders

and Stroke Grant R37-2113532 to Professor Robert T. Knight (Ph.D. advisor
to S.J.K.S.) and by the Alexander von Humboldt Foundation (R.F.H.). We
thank Falk Lieder, Sebastian Musslick, Jacob Miller, Jesse Livezey, Rika An-
tonova, and Robert Nishihara for helpful discussion.

The authors declare no competing financial interests.
Correspondence should be addressed to S. J. Katarina Slama, Helen

Wills Neuroscience Institute, Barker Hall #210C, Berkeley, CA 94720.
E-mail: slama@berkeley.edu.

DOI:10.1523/JNEUROSCI.0414-17.2017
Copyright © 2017 the authors 0270-6474/17/374427-03$15.00/0

The Journal of Neuroscience, April 26, 2017 • 37(17):4427– 4429 • 4427



sustained expectation). The field of feature-
based expectation has already been intro-
duced (Summerfield and Egner, 2016).
Another possible new subfield could be
object-based expectation, paralleling the
existing field of object-based attention (Ji-
ang et al., 2016). An open question within
this proposed framework is whether the ex-
pectation statuses of individual features in-
teract to form object-level expectation.

In a recent article in The Journal of
Neuroscience, Jiang et al. (2016) used a
computational model to simulate three
competing models for how expectations
about one object feature affects expecta-
tions about another (Jiang et al., 2016,
their Fig. 3), as follows: (1) expectations
do not spread from one object feature to
the other; (2) a prediction error in one
feature spreads to the other feature to ren-
der the whole object unexpected (the
reconciliation hypothesis); and (3) the ex-
pectation status of one feature repels the
expectation status of the other feature,
thereby promoting the perceptual infer-
ence that the two features belong to sepa-
rate objects (the segregation hypothesis).

The authors performed a behavioral
experiment in which subjects were pre-
sented with a cloud of moving dots, which
were either red or green (color dimen-
sion) and were moving either up or down
(motion dimension; Jiang et al., 2016,
their Fig. 1a). A trial-by-trial auditory cue
generated an expectation of the upcoming
feature values with 75% validity: the tim-
bre signaled the upcoming color, and the
pitch direction signaled the upcoming
motion direction. When subjects were in-
structed to allocate sustained attention to
one feature (color), the trial-by-trial ex-
pectation cue was associated with a behav-
ioral benefit in response times not only to
the attended feature, but also to the unat-
tended feature (motion; Jiang et al., 2016,
their Fig. 1c). This effect was interpreted
as evidence for cross-feature spread of ex-
pectation in support of the reconciliation
hypothesis.

To examine the neural substrates of
this effect, Jiang et al. (2016) performed
the same experiment using fMRI. They
analyzed their data using intersubject
multivoxel pattern analysis (for review,
see Haxby et al., 2014), comparing the
voxel-by-voxel pattern of activation be-
tween conditions in different regions of
the brain. In one analysis, a linear support
vector machine classifier was trained to
distinguish activity patterns in early visual
cortex resulting from two conditions in
which expectation was consistent (color
and motion both expected vs color and

motion both unexpected). In a second
analysis, the same classifier was trained to
distinguish between two conditions where
expectation was inconsistent between fea-
tures (color expected and motion unex-
pected vs color unexpected and motion
expected). The classifier showed greater
accuracy when separating the two consis-
tent conditions than when separating the
two inconsistent conditions (Jiang et al.,
2016, their Fig. 4f,g). This result matched
the predictions of the reconciliation hy-
pothesis and neither of the alternative
hypotheses (Jiang et al., 2016, their Fig.
4a– c). The authors concluded that objects
are the unit of selection, not only for at-
tention, but also for expectation.

In considering the behavior results,
readers with a psychology background
will note an analog in the classical Stroop
(1935) and Simon effects (Simon and
Wolf, 1963): performance on experimen-
tal tasks that require subjects to keep track
of a conjunction of inconsistent features is
worse than performance on tasks that re-
quire subjects to keep track of only a single
feature. These behavioral effects indicat-
ing interference by inconsistent feature
conditions are common in the psychology
literature and need not be interpreted as
object-level perceptual selection.

In considering the fMRI results, we
note that, to use a relative comparison of
the performance of two classifiers to draw
conclusions about brain function, the two
classifiers must have an equal chance at
separating the data, aside from the hy-
pothesis to be tested. If we assume that
early visual cortex contains neural ensem-
bles that separately encode color and
motion, then, from a predictive coding
perspective (Rao and Ballard, 1999; Alink
et al., 2010), the color ensemble will be
highly active when the color is unexpected
and the motion ensemble will be highly
active when the motion direction is unex-
pected. The classifier for the two consis-
tent conditions must then separate the
state of cortex in which both ensembles
are highly active from the state in which
neither ensemble is highly active. This
could in principle reduce to a comparison
as to whether visual cortex is active versus
inactive. The classifier for the inconsistent
conditions, however, must separate the
two intermediate states where the color
ensemble is highly active and the motion
ensemble is not from the state where the
motion ensemble is highly active and the
color ensemble is not. This would entail
learning to separate complex spatiotem-
poral patterns of activity in the motion
and color ensembles, a task that is more

difficult than separating high from low ac-
tivity. This scenario could explain the re-
sult of the classifier comparison without
making inferences about cross-feature
spread of expectation in early visual cor-
tex. Therefore, the presented conclusion
may not be the only interpretation of
these data.

A simple control could have resolved
this issue: the inclusion of a second object,
such as an additional spatially separate
cloud of dots. Experiments on object-level
spread of attention (Duncan, 1984; Egly et
al., 1994; O’Craven et al., 1999; Fiebelkorn
et al., 2013) typically include a control ob-
ject for the purpose of demonstrating that
attention does not spread there. A control
object would provide a stronger test of the
three hypotheses: no spread to a control
object would support the object-based
interpretation, but, without a control ob-
ject, the results are difficult to interpret.
For instance, they might indicate spatial
spread of expectation.

Future experiments on object-based
expectation would further benefit from
considering the role of time, a feature that
has recently started to gain traction in
the attention literature (Buschman and
Kastner, 2015; Denison et al., 2017). From
the perspective of a perceptual decision-
making framework (Kayser et al., 2010), it
is possible that probability- and relevance-
driven selection interact over the time
course of a perceptual decision. It is known
that object-based attention alternates be-
tween a cued and uncued location on the
same object at a faster frequency (8 Hz)
than between a cued location on one ob-
ject and an uncued location on a different
object (4 Hz; Fiebelkorn et al., 2013).
Rhythmic sampling on subsecond time-
scales has also been demonstrated for spa-
tial attention (Landau and Fries, 2012),
raising the possibility that rhythmic brain
activity may support multiple forms of
attention. One hypothesis is that expecta-
tion may align the phase of ongoing
rhythmic attentional sampling to opti-
mize cortical excitability at the time of an
expected event. Neural oscillations may
disentangle these rapid endogenous pri-
oritization processes during feature in-
tegration (Helfrich and Knight, 2016).
Delineating the spatiotemporal progres-
sion of these rapid mechanisms will neces-
sitate the use of recording methods with
greater temporal resolution than fMRI,
such as electroencephalography, magne-
toencephalography, and electrocorticog-
raphy. In the meantime, the present study
(Jiang et al., 2016) is a step in the right
direction toward understanding the mul-
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tiple processes that are collectively called
attention.
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